Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clin Immunol ; 247: 109240, 2023 02.
Article in English | MEDLINE | ID: covidwho-2177623

ABSTRACT

Kruppel-like factor 2 (KLF2) has been linked with fibrosis and neutrophil-associated thromboinflammation; however, its role in COVID-19 remains elusive. We investigated the effect of disease microenvironment on the fibrotic potential of human lung fibroblasts (LFs) and its association with KLF2 expression. LFs stimulated with plasma from severe COVID-19 patients down-regulated KLF2 expression at mRNA/protein and functional level acquiring a pre-fibrotic phenotype, as indicated by increased CCN2/collagen levels. Pre-incubation with the COMBI-treatment-agents (DNase I and JAKs/IL-6 inhibitors baricitinib/tocilizumab) restored KLF2 levels of LFs to normal abolishing their fibrotic activity. LFs stimulated with plasma from COMBI-treated patients at day-7 expressed lower CCN2 and higher KLF2 levels, compared to plasma prior-to-treatment, an effect not observed in standard-of-care treatment. In line with this, COMBI-treated patients had better outcome than standard-of-care group. These data link fibroblast KLF2 with NETosis and JAK/IL-6 signaling, suggesting the potential of combined therapeutic strategies in immunofibrotic diseases, such as COVID-19.


Subject(s)
COVID-19 , Kruppel-Like Transcription Factors , Thrombosis , Humans , Down-Regulation , Fibroblasts/metabolism , Fibrosis , Inflammation , Interleukin-6/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lung/metabolism , Transcription Factors/genetics
2.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
SELECTION OF CITATIONS
SEARCH DETAIL